
Joint Camera Pose Estimation and 3D Human
Pose Estimation in a Multi-Camera Setup

Jens Puwein1, Luca Ballan1, Remo Ziegler2 and Marc Pollefeys1

1Department of Computer Science, ETH Zurich, Switzerland
2Vizrt

Abstract. In this paper we propose an approach to jointly perform cam-
era pose estimation and human pose estimation from videos recorded by
a set of cameras separated by wide baselines. Multi-camera pose esti-
mation is very challenging in case of wide baselines or in general when
patch-based feature correspondences are difficult to establish across im-
ages.

For this reason, we propose to exploit the motion of an articulated struc-
ture in the scene, such as a human, to relate these cameras. More pre-
cisely, we first run a part-based human pose estimation for each camera
and each frame independently. Correctly detected joints are then used
to compute an initial estimate of the epipolar geometry between pairs of
cameras. In a combined optimization over all the recorded sequences, the
multi-camera configuration and the 3D motion of the kinematic structure
in the scene are inferred. The optimization accounts for time continuity,
part-based detection scores, optical flow, and body part visibility.

Our approach was evaluated on 4 publicly available datasets, evaluating
the accuracy of the camera poses and the human poses.

1 Introduction

Camera pose estimation is typically performed by establishing patch-based fea-
ture correspondences across images captured by the different cameras [1–4]. This
task can be very challenging in case of cameras placed far apart from each other
(wide baselines), or, in general, when no reliable correspondences can be found.
This is the case, for instance, in Figure 1, where, due to the homogenous back-
ground and the wide baselines, it is prohibitive to establish patch-based corre-
spondences. In such scenarios, different features need to be used, namely features
incorporating a higher level representation of the scene.

In this paper, we propose to exploit the motion of an actor in the scene to
establish correspondences between static intrinsically calibrated cameras. Sub-
sequently, the extrinsic parameters of the cameras and the pose of the actor at
each time instant are inferred jointly based on image measurements. The goal
is to find the camera disposition and the motion of a kinematic structure inside
the scene which best explain the measured optical flow and the probabilities of
each joint to be in specific locations in the images.
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Fig. 1. Given the videos recorded by a set of fixed wide-baseline cameras, our approach
recovers the extrinsic parameters of each camera in the scene together with the 3D pose
of the moving person at each time instant.

Recent advances in human pose estimation allow for inference of the human
pose even from a single image, without having to rely on any kind of fore-
ground/background segmentation of the scene [5]. While these methods work
very well for poses that are common in the training set, they often have short-
comings for others. Nevertheless, the results of these techniques can be leveraged
to generate the high level correspondences necessary to provide an initial cali-
bration of a static multi-camera setup. In this paper, we propose a method to
identify the correctly detected joint positions in each frame of each camera. We
then apply a standard structure-from-motion pipeline to these correspondences,
taking pose ambiguities into account. Once an initial calibration and initial 3D
joint positions are found, the 3D positions of the remaining joints are estimated
using optical flow. The camera calibration and the 3D human poses are further
optimized jointly leveraging the characteristic properties of multi-view videos,
namely smooth 3D trajectories, consistency of 2D joint movements with respect
to optical flow, and consistency with respect to discriminative scores of 2D joints.
From the initialization to the final optimization, the method goes from single
image 2D human pose estimation to the full joint estimation of 3D human poses
and camera parameters in a multi-camera setup. Building only on a very general
2D human pose estimation approach, and starting with an extrinsically uncal-
ibrated multi-camera sequence of a moving person, the camera calibration and
the full 3D human poses at each time instant are computed.

2 Related Work

Human pose estimation has been tackled in various settings and with varying
degrees of accuracy. At one end of the spectrum, there are the 2D human pose
estimation approaches which aim at recovering the 2D position and orientation
of the limbs or the positions of the joints of a human body from a single image [6,
5]. These approaches first compute the probabilities of each limb or joint being
at a particular position, orientation, and scale in the image. Subsequently, a
kinematic structure is fit on top of these observations to maximize a posterior
probability.
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When multiple images of the same scene and at the same time instance are
available, some methods infer the full 3D pose of the articulated object, provided
that the intrinsic and extrinsic parameters of each input image are known [7–9].

At the other end of the spectrum, when video content is available, time conti-
nuity is leveraged to resolve pose ambiguities generated by missing observations
or occlusions in single cameras [10–12] or multiple cameras [13–17]. These meth-
ods rely on a known pose of the actor in the first frame of the sequence to carry
out tracking for all the subsequent frames.

Pose estimation in uncalibrated multi-camera setups has also been explored
in the past. However, methods dealing with such a problem typically rely on
structure-from-motion techniques, which are first applied to the input videos in
order to recover the camera locations and orientations at each time instance. A
3D human pose tracking approach is then employed to recover the motion of the
actor in the scene [18].

Structure-from-motion is in fact the standard approach to infer the camera
calibration parameters from images. It is typically based on establishing patch-
based correspondences between images taken from different cameras. When this
kind of correspondences cannot be established, like in case of wide-baseline cam-
eras, higher level features, such as people and object trajectories, have been used.
For instance, walking people can be treated as moving vertical poles of constant
height, and their motion trajectories are used to calibrate the cameras [19–21].
The main restriction of these methods resides in the assumption that each cam-
era is capturing upright, walking people. This is too restrictive in a more general
setting. In contrast, several existing methods match people trajectories between
multiple views and use this additional information for camera calibration [22–26].

In this work, we propose to do something similar, but instead of using only
the position of a person, we exploit the location of each body part, generating a
higher number of reliable correspondences and a larger spread in the images.

Sinha and Pollefeys [27] propose to calibrate a camera network using silhou-
ette frontier points by sampling epipoles in each pair of images. However, this
method requires accurate segmentations of the actor.

Izo and Grimson [28] propose to perform camera calibration by matching
silhouettes of a persons walking cycles across views. At every frame, silhouettes
are compared to example silhouettes that are coupled to camera parameters.
The final sequence is obtained by combining per frame observations in a Hidden
Markov Model (HMM). This method also requires accurate segmentations and
it is moreover restricted to specific motions of the actor, such as a walk.

Recently, Ye et al. presented a 3D human pose and camera calibration track-
ing approach using three kinect sensors [29]. Manual initialization of the camera
poses and the human pose is necessary. Subsequently, camera poses and human
models are optimized jointly using an iterative procedure.

Our approach can deal with very wide baselines, it does not rely on segmen-
tation, it does not depend on manual initialization, and it does not require the
scene to have textured regions to establish correspondences between images. It
finds an initial setup by estimating the 2D poses of the actor in each camera
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independently and it tries to find a camera calibration and 3D human poses
explaining the image observations.

3 Algorithm

The input to our method consists of a synchronized multi-view video sequence
of a moving person. Cameras are assumed to be static, and their intrinsic pa-
rameters known a priori. Our goal is to estimate the full 3D pose of the person
in the scene at each time instant together with the extrinsic parameters of each
camera.

3.1 Initial Calibration

2D human pose estimation is first run on each camera and each frame indepen-
dently. For this aim, we use the publicly available Matlab code for the Flexible
Mixtures-of-parts (FMP) model [5]. FMP models humans as a tree-structured
graphical model in which nodes correspond to joints and edges to body limbs.
Unary terms model the appearance of each joint by means of HOG descriptors,
and pairwise terms model the relative positioning of neighboring joints. Infer-
ence on this graphical model can be carried out very efficiently using dynamic
programming and the generalized distance transform.

The resulting joint positions provide putative correspondences between cam-
eras, which are then used for calibration. However, 2D human pose estimation
usually does not differentiate between front and back facing people, or if it does,
it does it very poorly. This is also the case for FMP. Hence, correspondences
between symmetric body parts, like the arms and the legs, are ambiguous in the
sense that it is not possible to differentiate between the left ones and right ones.
To take this into account, both possibilities, front and back facing, have to be
considered.

For each camera pair, the two-view geometry is estimated using RANSAC
over the candidate joint correspondences [30]. During the sample selection, each
view is chosen to be either front or back facing. When counting the inliers in
each frame, the direction faced by the person which leads to the highest number
of inliers is chosen.

Additionally, in order to avoid unstable configurations of minimal solutions
when generating RANSAC hypotheses, correspondences are encouraged to be
evenly distributed over the entire images. Therefore, when drawing the samples,
sets of points originating from different joints and lying far apart temporally
are assigned higher probabilities of being chosen. It is not necessary to consider
all joints to establish correspondences. In fact, a wide spread of joint positions
is obtained by using the head, the lower end of the spine, the wrists, and the
ankles.

Cameras are added to a common world coordinate frame greedily, starting
with a bundle adjustment of the camera pair with the most inlier correspon-
dences [31]. Thereafter, in each step, the camera with the most inlier correspon-
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Fig. 2. Camera setup and joint positions used for the calibration of the INRA dancer
dataset.

dences to the already included cameras is added, followed by a bundle adjust-
ment. This process is repeated until all cameras are within a common world
coordinate frame and refined using bundle adjustment.

The result is an initial estimate of the poses of all cameras in the setup.
An example of a camera setup and the joint positions used for its calibration is
shown in Figure 2.

3.2 Initial 3D Joint Positions

Body joints are triangulated using the initial camera calibration computed in
the previous section. A triangulated joint position is considered valid if it can be
triangulated by at least 3 cameras with a reprojection error below 5 pixels. In
practice, triangulation is performed for each frame and each joint considering all
the possible combinations of cameras that could verify that specific joint. The
combination with the highest number of agreeing cameras is then kept.

For symmetric joints, like ankles and wrists, care has to be taken. For such
pairs of joints, in a first step, the combination of cameras and front facing/back
facing of the person that leads to the largest number of cameras verifying the
joint is picked greedily. All remaining joint positions are used to potentially
verify the second joint that is remaining. This leads to one 3D joint, two 3D
joints, or no 3D joint of the same kind (e.g., left ankle and right ankle) per
frame. Each joint might be either the left or right joint of the true 3D pose.
In order to consistently label the 3D joints as left/right, an arbitrary left/right
labeling is chosen for the first frame where both joints appear. This information
is then propagated forward and backward through the whole sequence using
optical flow.

Using the verified joints as anchors, the missing joint positions throughout
the sequence can be inferred using optical flow.

3.3 Joint Optimization

The initial camera calibration and the initial 3D joint positions are refined in
a combined optimization step, aiming at finding the correct camera configu-
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ration and a consistent kinematic structure evolving over time, explaining the
observations.

Let θc denote the extrinsic parameters of camera c, and let Xt
i denote the

3D coordinates of joint i at time t. Xt
i and θc are unknowns of the problem.

Since the goal is to find a single kinematic structure for the whole recorded
sequence, the length of each body limb needs to be constant over time. To achieve
this, an additional set of unknowns is introduced, namely e(i,j), indicating the
length of the limb (i, j) ∈ E connecting joint i and joint j. Here, E represents the
edges of the kinematic structure to estimate. To enforce constant limb lengths,
the kinematic structure has to minimize the following error functional

Elimb(X, e) =
∑
t

∑
(i,j)∈E

(
‖Xt

i −Xt
j‖ − e(i,j)

)2
. (1)

To enforce time continuity, a constant velocity model for each joint in the
structure is deployed by forcing the second derivative of Xt

i to be small. Formally,
this is expressed by

Esmooth(X) =
∑
t,i

‖Ẍt
i‖2, (2)

where Ẍt
i is approximated by central finite differences.

Concerning the image observations, both optical flow and part-based detec-
tion scores are used. It is assumed that the motion of the kinematic structure is
coherent with the measured optical flow in each camera. Moreover the position
of each joint in each frame should project to a 2D image position having a high
detector score for the corresponding joint. To this aim, optical flow is computed
for each video stream, and the detection scores are computed for each joint and
each frame in each video.

Optical flow was computed using the OpenCV implementation of the algo-
rithm introduced by Farnebäck [32, 33]. An example is shown in Figure 3. Let
OFc,t(x, y) denote the optical flow measured in camera c at time t for a generic
pixel (x, y), and let π(θc,X) be the projection function mapping 3D points X
to 2D image coordinates in camera c, specified by the calibration parameter θc.
In order to force the motion of the kinematic structure to be consistent with the
measured optical flow in each image, the following functional should be mini-
mized

EOF (X,θ) =
∑
c,t,i

‖OFc,t(π(θc,X
t
i))− (π(θc,X

t+1
i )− π(θc,X

t
i))‖2. (3)

Let Detc,t,i(x, y) denote the detection probability for joint i measured in
camera c at time t for a generic pixel (x, y). Probabilities Detc,t,i are computed
using the sigmoid function and an SVM model trained on the 2D joint locations
that were used to initialize the 3D points in Section 3.2 [34]. The feature vectors
are constructed by concatenating HOG feature vectors [35] and color histogram
feature vectors. HOG features are computed using cell size 8, block size 4 and a
block overlap of 3. The color feature vectors are obtained by binning the HSV
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Fig. 3. Top row: two consecutive images from the Soccer Juggling sequence. Bottom
row: optical flow in x-direction (left) and y-direction (right). The units of the color
coding are given in pixels.

values of 25x25 patches independently into 8 bins per channel. After training,
the SVM model is evaluated for all cameras and all images to obtain Detc,t,i.

By applying the negative logarithm, probabilities Detc,t,i are transformed
to negative log-probabilities. An example of the resulting detection scores for
the left ankle is shown in Figure 4. The values obtained by subsequently taking
the square root are denoted as Detc,t,i(x, y). To enforce the joint positions to
be consistent with the trained detector, the following functional needs to be
minimized:

EDet(X,θ) =
∑
c,t,i

Detc,t,i(π(θc,X
t
i))

2. (4)

In order to guide the optimization and in order not to digress too much from
the initial solution, reprojected joints should be close to the joint positions that
were used for initialization, if available. More formally,

ERep(X,θ) =
∑
c,t,i

νtc,iLδ(‖π(θc,X
t
i)− xtc,i‖). (5)

should be minimized. νtc,i is a binary variable indicating whether joint i in camera
c at time t was consistent with multiple cameras and hence used for initialization.
To account for outliers, the robust Huber cost function Lδ is used [3]. The
threshold δ was set to 5 pixels.
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Fig. 4. Input image (left) and detection scores of the left ankle (right).

Fig. 5. The rendered 3D model of the human (right) and the corresponding image
(left).

The final functional to minimize is a linear combination of the previously
defined costs, i.e.,

E(X, e,θ) = λ1Elimb(X, e) + λ2Esmooth(X) + λ3EOF (X,θ)

+ λ4EDet(X,θ) + λ5ERep(X,θ) (6)

where the λi are constants defined to balance the influence of each term. For the
experiments, the values λi were chosen in a grid search on the first 100 frames of
the Soccer Juggling sequence [14] and kept constant for all experiments. Since
the 3D reconstruction is only given up to scale, the torso of the person is set to
a fixed length to ensure that E(X, e,θ) is not affected by scale changes of the
3D structure.

The optimization is carried out using the Levenberg-Marquardt algorithm.
Taking advantage of the sparse structure of the Jacobian of E makes the opti-
mization much more efficient. To account for occlusions in both Equation 3 and
Equation 4, a simple 3D model of a human is used, where every limb is mod-
eled as a cylinder. By rendering the model in all images, it is easy to determine
which joints are visible in which frames and in which cameras. Figure 5 shows
an example of a rendered cylindrical model. Occluded joints are simply excluded
from the sums in Eq. 3 and Eq. 4.
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Fig. 6. Camera setup and 3D skeleton estimated for the INRA dancer dataset.

The optimization iterates between the Levenberg-Marquardt algorithm and
recomputing the visibility term. Figure 6 shows the final camera setup and an
example pose for the INRIA dataset.

4 Results

The presented approach was evaluated on 4 publicly available datasets, namely,
the INRIA dancer dataset (201 frames, the first 6 cameras) [36], the HumanEva-
II dataset (the first 500 frames, 4 cameras) [37], and the Soccer Juggling sequence
(531 frames, 4 cameras) and the Sword Swing sequence (383 frames, 4 cameras),
both from Ballan and Cortelazzo [14]. For all these datasets, a camera calibra-
tion is provided. The FMP model used in Section 3 was trained on the publicly
available LEEDS sports dataset [38]. This model was then used for all exper-
iments without any specific tuning. This shows that the presented method is
general and applicable to a wide range of data. A few images from the LEEDS
dataset are shown in Figure 7.

The geometric verification of joints using the camera parameters provides a
valuable confidence measure for estimated joint positions. Even though the 2D
human pose estimates in the individual cameras are noisy and often incorrect,
the presented method corrects many errors by using only joint positions verified
by the geometry of the camera setup to create an initial guess of 3D joint po-
sitions. The final optimization further optimizes joint positions by fixing edge
lengths, enforcing smooth motions and consistency with image measurements. A
comparison of a few poses obtained from 2D human pose estimation and poses
obtained by projecting optimized 3D poses can be found in Figure 8.

Quantitative Evaluation The presented approach was evaluated quantita-
tively in terms of camera pose estimation error and human pose estimation er-
ror. Table 1 illustrates the resulting positional distances between estimated and
groundtruth camera centers as well as the angular differences for the relative
angles between all pairs of estimated cameras and all pairs of groundtruth cam-
eras, respectively. The initial calibration obtained from Section 3 is compared
with the calibration obtained from the final joint optimization of Section 3.



10 Jens Puwein, Luca Ballan, Remo Ziegler and Marc Pollefeys

Fig. 7. Example training images of the LEEDS dataset.

Since the presented method returns a 3D reconstruction up to a similarity
transformation (rotation, translation and scale), the result needs to be aligned
with the groundtruth for comparison. This was done by computing the global
similarity transformation minimizing the squared distances between the ground-
truth and the estimated camera centers.

Concerning the error in the human pose estimation, both 3D and 2D errors
were evaluated for the Soccer Juggling and the Sword Swing dataset. The very
good results obtained by Ballan and Cortelazzo were inspected visually and
used as groundtruth [14]. In both cases, left/right flips of limbs were ignored
during the evaluation. The left arm was switched with the right arm, if the error
decreased. The same holds for the legs.

To evaluate the 2D errors, 3D joint positions were projected into the images
using the groundtruth camera calibration for the groundtruth 3D joint positions
and the estimated camera calibration for the estimated 3D joint positions. To
quantify the errors, the PCK measure introduced by Yang and Ramanan [5]
was used. The PCK measure qualifies a detection as correct if the distance be-
tween the detected position and the groundtruth position is below αmax(w, h).
w and h are the width and height of the axis-aligned bounding box containing
all groundtruth joints in the respective image. Varying the PCK threshold α
corresponds to varying the desired accuracy. PCK scores obtained by using the
proposed approach are compared to the ones obtained by using the standard
FMP approach [5]. The results for the Soccer Juggling dataset and the Sword
Swing dataset are depicted in Figures 9 and 10, respectively. While head po-
sitions are estimated accurately in both methods, the errors of the remaining
body parts are decreased significantly by the presented method.

The average errors in 3D joint positions for the Soccer Juggling dataset and
the Sword Swing dataset are given in Tables 2 and 3, respectively. A plot il-
lustrating the average 3D joint position errors per frame is shown in Figure 11.
The aforementioned Tables 2 and 3 and Figure 11 also compare the 3D joint
positions obtained after the initialization with the ones obtained after the final
optimization, described in Sections 3.2 and 3.3. Especially for the Sword Swing
dataset, the final optimization leads to a significant improvement of the 3D joint
accuracy.

To evaluate the accuracy on the HumanEva-II dataset, the online evaluation
tool has to be used [39]. For the S4 dataset, the walking cycle was evaluated (first
350 frames). The mean error over all joint positions after the final optimization
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Fig. 8. Comparison with the baseline approach [5].

was 82mm. To the best of knowledge, the state-of-the-art result for the walking
cycle was obtained by Gall et al. By tracking a full 3D model of the person an
error of 28mm was achieved [40]. A plot showing the average 3D joint position
errors per frame is given in Figure 12.

5 Conclusion

In this paper we presented a novel technique to calibrate a multi-camera setup
by jointly estimating the extrinsic camera parameters and the 3D poses of a
person in the scene, without relying on patch-based feature correspondences. 2D
joint positions detected by 2D human pose estimation are used as higher level
features to establish putative correspondences between cameras and to bootstrap
the joint optimization of camera calibration and 3D poses. The final optimiza-
tion takes advantage of the 3D articulated structure and temporal continuity
and it enforces consistency with image measurements. The experimental evalu-
ation on 4 publicly available datasets investigates the accuracy of the estimated
camera poses and the 2D and 3D joint positions, showing the benefit of using
the presented joint optimization.
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Fig. 9. PCK score obtained using the standard FMP model [5] (left), and the presented
approach (right), on the Soccer Juggling dataset.
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Fig. 10. PCK score obtained using the standard FMP model [5] (left), and the pre-
sented approach (right), on the Sword Swing dataset.
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Fig. 11. Average per frame error of estimated 3D joint positions evaluated on the
Soccer Juggling dataset (left), and on the Sword Swing dataset (right).
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Fig. 12. Average per frame error of estimated 3D joint positions evaluated on the
walking cycle of the HumanEva-II S4 dataset.
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Positional error [mm] Angular error [deg]
initial final initial final

Soccer Juggling 54 ± 11 50 ± 13 1.2 ± 0.7 1.0 ± 0.5
Sword Swing 71 ± 26 58 ± 21 0.9 ± 0.6 1.0 ± 0.5
INRIA 55 ± 13 53 ± 13 0.7 ± 0.5 0.4 ± 0.3
HumanEva-II 20 ± 7 7 ± 2 0.3 ± 0.2 0.3 ± 0.3

Table 1. Camera pose estimation error: average error ± standard deviation.

Head Elbows Wrists Knees Ankles Total

initial 68 ± 116 75 ± 119 87 ± 156 122 ± 129 115 ± 139 94 ± 127
final 66 ± 115 79 ± 117 86 ± 154 123 ± 114 120 ± 144 96 ± 124

Table 2. 3D joint position estimation error: average error ± standard deviation [mm],
on the Soccer Juggling dataset.

Head Elbows Wrists Knees Ankles Total

initial 70 ± 19 93 ± 43 87 ± 51 69 ± 47 99 ± 43 84 ± 42
final 34 ± 11 68 ± 38 64 ± 37 71 ± 34 94 ± 25 76 ± 41

Table 3. 3D joint position estimation error: average error ± standard deviation [mm],
on the Sword Swing dataset.
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